Author Affiliations
Abstract
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006
The frequency stability of an all-solid-state Nd:YVO4 laser is significantly improved by means of a specially designed Fabry-Perot (F-P) interferometer used for the frequency standard in the frequency-stabilizing system. The temperature of the F-P cavity is accurately controlled by a set of thermoelectric cooler (TEC) modules attached on the body of the cavity and the electronic feedback circuit. We find that the long-term unidirectional frequency shift of the output laser, resulting from the slow increase of the cavity length under the effect of the temperature integration on the cavity body, is essentially eliminated. The frequency stability of the output laser with the power of 530 mW is better than +- 200 kHz in 1 minute and +- 2.3 MHz in 40 minutes, respectively. The fluctuation of output power is smaller than +- 0.5% over one hour.
120.2230 Fabry-Perot 120.4640 optical instruments 140.3560 lasers ring 
Chinese Optics Letters
2004, 2(6): 06334

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!